Copied to
clipboard

G = S3×C22.D4order 192 = 26·3

Direct product of S3 and C22.D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×C22.D4, C4⋊C427D6, C22⋊C430D6, D6.44(C2×D4), (C22×C4)⋊40D6, D6⋊C426C22, (C2×D4).161D6, C6.81(C22×D4), C22.43(S3×D4), D6.39(C4○D4), C23.9D629C2, D6.D425C2, (C2×C6).196C24, (C2×C12).69C23, C4⋊Dic338C22, (C22×S3).96D4, Dic3⋊C421C22, (C22×C12)⋊38C22, (C6×D4).134C22, (C22×C6).31C23, C23.35(C22×S3), (C2×D12).155C22, C23.21D619C2, C6.D428C22, C23.23D614C2, C23.28D620C2, (S3×C23).56C22, C22.217(S3×C23), (C22×S3).256C23, (C2×Dic3).243C23, (C22×Dic3)⋊45C22, (S3×C4⋊C4)⋊31C2, (C2×S3×D4).8C2, C2.54(C2×S3×D4), (S3×C2×C4)⋊70C22, (S3×C22×C4)⋊23C2, C2.59(S3×C4○D4), (C2×C6).57(C2×D4), (C3×C4⋊C4)⋊23C22, (S3×C22⋊C4)⋊10C2, C6.171(C2×C4○D4), C34(C2×C22.D4), (C2×C4).60(C22×S3), (C3×C22⋊C4)⋊19C22, (C3×C22.D4)⋊4C2, (C2×C3⋊D4).46C22, SmallGroup(192,1211)

Series: Derived Chief Lower central Upper central

C1C2×C6 — S3×C22.D4
C1C3C6C2×C6C22×S3S3×C23S3×C22×C4 — S3×C22.D4
C3C2×C6 — S3×C22.D4
C1C22C22.D4

Generators and relations for S3×C22.D4
 G = < a,b,c,d,e,f | a3=b2=c2=d2=e4=f2=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf=cd=dc, de=ed, df=fd, fef=de-1 >

Subgroups: 944 in 342 conjugacy classes, 111 normal (39 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C4×S3, D12, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×S3, C22×C6, C2×C22⋊C4, C2×C4⋊C4, C22.D4, C22.D4, C23×C4, C22×D4, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C6.D4, C3×C22⋊C4, C3×C22⋊C4, C3×C4⋊C4, S3×C2×C4, S3×C2×C4, S3×C2×C4, C2×D12, S3×D4, C22×Dic3, C2×C3⋊D4, C22×C12, C6×D4, S3×C23, C2×C22.D4, S3×C22⋊C4, S3×C22⋊C4, C23.9D6, C23.21D6, S3×C4⋊C4, D6.D4, C23.28D6, C23.23D6, C3×C22.D4, S3×C22×C4, C2×S3×D4, S3×C22.D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C22.D4, C22×D4, C2×C4○D4, S3×D4, S3×C23, C2×C22.D4, C2×S3×D4, S3×C4○D4, S3×C22.D4

Smallest permutation representation of S3×C22.D4
On 48 points
Generators in S48
(1 43 22)(2 44 23)(3 41 24)(4 42 21)(5 29 36)(6 30 33)(7 31 34)(8 32 35)(9 39 13)(10 40 14)(11 37 15)(12 38 16)(17 27 48)(18 28 45)(19 25 46)(20 26 47)
(1 3)(2 4)(5 7)(6 8)(9 37)(10 38)(11 39)(12 40)(13 15)(14 16)(17 46)(18 47)(19 48)(20 45)(21 44)(22 41)(23 42)(24 43)(25 27)(26 28)(29 34)(30 35)(31 36)(32 33)
(1 15)(2 25)(3 13)(4 27)(5 14)(6 28)(7 16)(8 26)(9 41)(10 29)(11 43)(12 31)(17 21)(18 33)(19 23)(20 35)(22 37)(24 39)(30 45)(32 47)(34 38)(36 40)(42 48)(44 46)
(1 6)(2 7)(3 8)(4 5)(9 47)(10 48)(11 45)(12 46)(13 26)(14 27)(15 28)(16 25)(17 40)(18 37)(19 38)(20 39)(21 36)(22 33)(23 34)(24 35)(29 42)(30 43)(31 44)(32 41)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(2 5)(4 7)(9 47)(10 12)(11 45)(13 26)(14 16)(15 28)(17 19)(18 37)(20 39)(21 34)(23 36)(25 27)(29 44)(31 42)(38 40)(46 48)

G:=sub<Sym(48)| (1,43,22)(2,44,23)(3,41,24)(4,42,21)(5,29,36)(6,30,33)(7,31,34)(8,32,35)(9,39,13)(10,40,14)(11,37,15)(12,38,16)(17,27,48)(18,28,45)(19,25,46)(20,26,47), (1,3)(2,4)(5,7)(6,8)(9,37)(10,38)(11,39)(12,40)(13,15)(14,16)(17,46)(18,47)(19,48)(20,45)(21,44)(22,41)(23,42)(24,43)(25,27)(26,28)(29,34)(30,35)(31,36)(32,33), (1,15)(2,25)(3,13)(4,27)(5,14)(6,28)(7,16)(8,26)(9,41)(10,29)(11,43)(12,31)(17,21)(18,33)(19,23)(20,35)(22,37)(24,39)(30,45)(32,47)(34,38)(36,40)(42,48)(44,46), (1,6)(2,7)(3,8)(4,5)(9,47)(10,48)(11,45)(12,46)(13,26)(14,27)(15,28)(16,25)(17,40)(18,37)(19,38)(20,39)(21,36)(22,33)(23,34)(24,35)(29,42)(30,43)(31,44)(32,41), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,5)(4,7)(9,47)(10,12)(11,45)(13,26)(14,16)(15,28)(17,19)(18,37)(20,39)(21,34)(23,36)(25,27)(29,44)(31,42)(38,40)(46,48)>;

G:=Group( (1,43,22)(2,44,23)(3,41,24)(4,42,21)(5,29,36)(6,30,33)(7,31,34)(8,32,35)(9,39,13)(10,40,14)(11,37,15)(12,38,16)(17,27,48)(18,28,45)(19,25,46)(20,26,47), (1,3)(2,4)(5,7)(6,8)(9,37)(10,38)(11,39)(12,40)(13,15)(14,16)(17,46)(18,47)(19,48)(20,45)(21,44)(22,41)(23,42)(24,43)(25,27)(26,28)(29,34)(30,35)(31,36)(32,33), (1,15)(2,25)(3,13)(4,27)(5,14)(6,28)(7,16)(8,26)(9,41)(10,29)(11,43)(12,31)(17,21)(18,33)(19,23)(20,35)(22,37)(24,39)(30,45)(32,47)(34,38)(36,40)(42,48)(44,46), (1,6)(2,7)(3,8)(4,5)(9,47)(10,48)(11,45)(12,46)(13,26)(14,27)(15,28)(16,25)(17,40)(18,37)(19,38)(20,39)(21,36)(22,33)(23,34)(24,35)(29,42)(30,43)(31,44)(32,41), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,5)(4,7)(9,47)(10,12)(11,45)(13,26)(14,16)(15,28)(17,19)(18,37)(20,39)(21,34)(23,36)(25,27)(29,44)(31,42)(38,40)(46,48) );

G=PermutationGroup([[(1,43,22),(2,44,23),(3,41,24),(4,42,21),(5,29,36),(6,30,33),(7,31,34),(8,32,35),(9,39,13),(10,40,14),(11,37,15),(12,38,16),(17,27,48),(18,28,45),(19,25,46),(20,26,47)], [(1,3),(2,4),(5,7),(6,8),(9,37),(10,38),(11,39),(12,40),(13,15),(14,16),(17,46),(18,47),(19,48),(20,45),(21,44),(22,41),(23,42),(24,43),(25,27),(26,28),(29,34),(30,35),(31,36),(32,33)], [(1,15),(2,25),(3,13),(4,27),(5,14),(6,28),(7,16),(8,26),(9,41),(10,29),(11,43),(12,31),(17,21),(18,33),(19,23),(20,35),(22,37),(24,39),(30,45),(32,47),(34,38),(36,40),(42,48),(44,46)], [(1,6),(2,7),(3,8),(4,5),(9,47),(10,48),(11,45),(12,46),(13,26),(14,27),(15,28),(16,25),(17,40),(18,37),(19,38),(20,39),(21,36),(22,33),(23,34),(24,35),(29,42),(30,43),(31,44),(32,41)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(2,5),(4,7),(9,47),(10,12),(11,45),(13,26),(14,16),(15,28),(17,19),(18,37),(20,39),(21,34),(23,36),(25,27),(29,44),(31,42),(38,40),(46,48)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L2M 3 4A4B4C4D4E4F4G4H4I4J4K4L4M4N6A6B6C6D6E6F12A12B12C12D12E12F12G
order1222222222222234444444444444466666612121212121212
size1111223333466122222244466661212122224484444888

42 irreducible representations

dim11111111111222222244
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6D6C4○D4S3×D4S3×C4○D4
kernelS3×C22.D4S3×C22⋊C4C23.9D6C23.21D6S3×C4⋊C4D6.D4C23.28D6C23.23D6C3×C22.D4S3×C22×C4C2×S3×D4C22.D4C22×S3C22⋊C4C4⋊C4C22×C4C2×D4D6C22C2
# reps13212211111143211824

Matrix representation of S3×C22.D4 in GL6(𝔽13)

100000
010000
001000
000100
0000012
0000112
,
1200000
0120000
0012000
0001200
000001
000010
,
580000
1080000
000800
005000
000010
000001
,
1200000
0120000
0012000
0001200
000010
000001
,
500000
1080000
0001200
0012000
0000120
0000012
,
100000
2120000
001000
0001200
000010
000001

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[5,10,0,0,0,0,8,8,0,0,0,0,0,0,0,5,0,0,0,0,8,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,10,0,0,0,0,0,8,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,2,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

S3×C22.D4 in GAP, Magma, Sage, TeX

S_3\times C_2^2.D_4
% in TeX

G:=Group("S3xC2^2.D4");
// GroupNames label

G:=SmallGroup(192,1211);
// by ID

G=gap.SmallGroup(192,1211);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,100,346,297,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^4=f^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f=d*e^-1>;
// generators/relations

׿
×
𝔽