direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3×C22.D4, C4⋊C4⋊27D6, C22⋊C4⋊30D6, D6.44(C2×D4), (C22×C4)⋊40D6, D6⋊C4⋊26C22, (C2×D4).161D6, C6.81(C22×D4), C22.43(S3×D4), D6.39(C4○D4), C23.9D6⋊29C2, D6.D4⋊25C2, (C2×C6).196C24, (C2×C12).69C23, C4⋊Dic3⋊38C22, (C22×S3).96D4, Dic3⋊C4⋊21C22, (C22×C12)⋊38C22, (C6×D4).134C22, (C22×C6).31C23, C23.35(C22×S3), (C2×D12).155C22, C23.21D6⋊19C2, C6.D4⋊28C22, C23.23D6⋊14C2, C23.28D6⋊20C2, (S3×C23).56C22, C22.217(S3×C23), (C22×S3).256C23, (C2×Dic3).243C23, (C22×Dic3)⋊45C22, (S3×C4⋊C4)⋊31C2, (C2×S3×D4).8C2, C2.54(C2×S3×D4), (S3×C2×C4)⋊70C22, (S3×C22×C4)⋊23C2, C2.59(S3×C4○D4), (C2×C6).57(C2×D4), (C3×C4⋊C4)⋊23C22, (S3×C22⋊C4)⋊10C2, C6.171(C2×C4○D4), C3⋊4(C2×C22.D4), (C2×C4).60(C22×S3), (C3×C22⋊C4)⋊19C22, (C3×C22.D4)⋊4C2, (C2×C3⋊D4).46C22, SmallGroup(192,1211)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×C22.D4
G = < a,b,c,d,e,f | a3=b2=c2=d2=e4=f2=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf=cd=dc, de=ed, df=fd, fef=de-1 >
Subgroups: 944 in 342 conjugacy classes, 111 normal (39 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C4×S3, D12, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×S3, C22×C6, C2×C22⋊C4, C2×C4⋊C4, C22.D4, C22.D4, C23×C4, C22×D4, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C6.D4, C3×C22⋊C4, C3×C22⋊C4, C3×C4⋊C4, S3×C2×C4, S3×C2×C4, S3×C2×C4, C2×D12, S3×D4, C22×Dic3, C2×C3⋊D4, C22×C12, C6×D4, S3×C23, C2×C22.D4, S3×C22⋊C4, S3×C22⋊C4, C23.9D6, C23.21D6, S3×C4⋊C4, D6.D4, C23.28D6, C23.23D6, C3×C22.D4, S3×C22×C4, C2×S3×D4, S3×C22.D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C22.D4, C22×D4, C2×C4○D4, S3×D4, S3×C23, C2×C22.D4, C2×S3×D4, S3×C4○D4, S3×C22.D4
(1 43 22)(2 44 23)(3 41 24)(4 42 21)(5 29 36)(6 30 33)(7 31 34)(8 32 35)(9 39 13)(10 40 14)(11 37 15)(12 38 16)(17 27 48)(18 28 45)(19 25 46)(20 26 47)
(1 3)(2 4)(5 7)(6 8)(9 37)(10 38)(11 39)(12 40)(13 15)(14 16)(17 46)(18 47)(19 48)(20 45)(21 44)(22 41)(23 42)(24 43)(25 27)(26 28)(29 34)(30 35)(31 36)(32 33)
(1 15)(2 25)(3 13)(4 27)(5 14)(6 28)(7 16)(8 26)(9 41)(10 29)(11 43)(12 31)(17 21)(18 33)(19 23)(20 35)(22 37)(24 39)(30 45)(32 47)(34 38)(36 40)(42 48)(44 46)
(1 6)(2 7)(3 8)(4 5)(9 47)(10 48)(11 45)(12 46)(13 26)(14 27)(15 28)(16 25)(17 40)(18 37)(19 38)(20 39)(21 36)(22 33)(23 34)(24 35)(29 42)(30 43)(31 44)(32 41)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(2 5)(4 7)(9 47)(10 12)(11 45)(13 26)(14 16)(15 28)(17 19)(18 37)(20 39)(21 34)(23 36)(25 27)(29 44)(31 42)(38 40)(46 48)
G:=sub<Sym(48)| (1,43,22)(2,44,23)(3,41,24)(4,42,21)(5,29,36)(6,30,33)(7,31,34)(8,32,35)(9,39,13)(10,40,14)(11,37,15)(12,38,16)(17,27,48)(18,28,45)(19,25,46)(20,26,47), (1,3)(2,4)(5,7)(6,8)(9,37)(10,38)(11,39)(12,40)(13,15)(14,16)(17,46)(18,47)(19,48)(20,45)(21,44)(22,41)(23,42)(24,43)(25,27)(26,28)(29,34)(30,35)(31,36)(32,33), (1,15)(2,25)(3,13)(4,27)(5,14)(6,28)(7,16)(8,26)(9,41)(10,29)(11,43)(12,31)(17,21)(18,33)(19,23)(20,35)(22,37)(24,39)(30,45)(32,47)(34,38)(36,40)(42,48)(44,46), (1,6)(2,7)(3,8)(4,5)(9,47)(10,48)(11,45)(12,46)(13,26)(14,27)(15,28)(16,25)(17,40)(18,37)(19,38)(20,39)(21,36)(22,33)(23,34)(24,35)(29,42)(30,43)(31,44)(32,41), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,5)(4,7)(9,47)(10,12)(11,45)(13,26)(14,16)(15,28)(17,19)(18,37)(20,39)(21,34)(23,36)(25,27)(29,44)(31,42)(38,40)(46,48)>;
G:=Group( (1,43,22)(2,44,23)(3,41,24)(4,42,21)(5,29,36)(6,30,33)(7,31,34)(8,32,35)(9,39,13)(10,40,14)(11,37,15)(12,38,16)(17,27,48)(18,28,45)(19,25,46)(20,26,47), (1,3)(2,4)(5,7)(6,8)(9,37)(10,38)(11,39)(12,40)(13,15)(14,16)(17,46)(18,47)(19,48)(20,45)(21,44)(22,41)(23,42)(24,43)(25,27)(26,28)(29,34)(30,35)(31,36)(32,33), (1,15)(2,25)(3,13)(4,27)(5,14)(6,28)(7,16)(8,26)(9,41)(10,29)(11,43)(12,31)(17,21)(18,33)(19,23)(20,35)(22,37)(24,39)(30,45)(32,47)(34,38)(36,40)(42,48)(44,46), (1,6)(2,7)(3,8)(4,5)(9,47)(10,48)(11,45)(12,46)(13,26)(14,27)(15,28)(16,25)(17,40)(18,37)(19,38)(20,39)(21,36)(22,33)(23,34)(24,35)(29,42)(30,43)(31,44)(32,41), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,5)(4,7)(9,47)(10,12)(11,45)(13,26)(14,16)(15,28)(17,19)(18,37)(20,39)(21,34)(23,36)(25,27)(29,44)(31,42)(38,40)(46,48) );
G=PermutationGroup([[(1,43,22),(2,44,23),(3,41,24),(4,42,21),(5,29,36),(6,30,33),(7,31,34),(8,32,35),(9,39,13),(10,40,14),(11,37,15),(12,38,16),(17,27,48),(18,28,45),(19,25,46),(20,26,47)], [(1,3),(2,4),(5,7),(6,8),(9,37),(10,38),(11,39),(12,40),(13,15),(14,16),(17,46),(18,47),(19,48),(20,45),(21,44),(22,41),(23,42),(24,43),(25,27),(26,28),(29,34),(30,35),(31,36),(32,33)], [(1,15),(2,25),(3,13),(4,27),(5,14),(6,28),(7,16),(8,26),(9,41),(10,29),(11,43),(12,31),(17,21),(18,33),(19,23),(20,35),(22,37),(24,39),(30,45),(32,47),(34,38),(36,40),(42,48),(44,46)], [(1,6),(2,7),(3,8),(4,5),(9,47),(10,48),(11,45),(12,46),(13,26),(14,27),(15,28),(16,25),(17,40),(18,37),(19,38),(20,39),(21,36),(22,33),(23,34),(24,35),(29,42),(30,43),(31,44),(32,41)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(2,5),(4,7),(9,47),(10,12),(11,45),(13,26),(14,16),(15,28),(17,19),(18,37),(20,39),(21,34),(23,36),(25,27),(29,44),(31,42),(38,40),(46,48)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 6A | 6B | 6C | 6D | 6E | 6F | 12A | 12B | 12C | 12D | 12E | 12F | 12G |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 6 | 6 | 12 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | D6 | C4○D4 | S3×D4 | S3×C4○D4 |
kernel | S3×C22.D4 | S3×C22⋊C4 | C23.9D6 | C23.21D6 | S3×C4⋊C4 | D6.D4 | C23.28D6 | C23.23D6 | C3×C22.D4 | S3×C22×C4 | C2×S3×D4 | C22.D4 | C22×S3 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | D6 | C22 | C2 |
# reps | 1 | 3 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 3 | 2 | 1 | 1 | 8 | 2 | 4 |
Matrix representation of S3×C22.D4 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
5 | 8 | 0 | 0 | 0 | 0 |
10 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
5 | 0 | 0 | 0 | 0 | 0 |
10 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[5,10,0,0,0,0,8,8,0,0,0,0,0,0,0,5,0,0,0,0,8,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,10,0,0,0,0,0,8,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,2,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
S3×C22.D4 in GAP, Magma, Sage, TeX
S_3\times C_2^2.D_4
% in TeX
G:=Group("S3xC2^2.D4");
// GroupNames label
G:=SmallGroup(192,1211);
// by ID
G=gap.SmallGroup(192,1211);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,100,346,297,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^4=f^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f=d*e^-1>;
// generators/relations